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MODULE 1
BASIC CONCEPTS OF DATA 

STRUCTURES
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DATASTRUCTURE
A data structure is a particular way of organizing data in a

computer so that it can be used effectively
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ALGORITHM
An algorithm is a finite set of instructions which, if followed,

accomplish a particular task. Every algorithm must satisfy the
following criteria

• Input – externally supplied
• Output – at least one quantity is produced
• Definiteness – each instruction must be clear and unambiguous
• Finiteness – for all cases , the algorithm will terminate after a

number of steps
• Effectiveness –must be feasible
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ALGORITHM ANALYSIS
To analyze an algorithm is to determine the amount of resource

(such as Time and Storage Space) necessary to execute it.
In theoretical analysis of algorithms, it is common to estimate their

complexity in the asymptotic sense, ie to estimate the complexity
function for arbitrarily large input.
Space Complexity
• The space complexity of a program is the amount of memory that

it needs to run to completion. The space needed the program is the
sum of the following components
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1. Fixed Space Requirements
• Do not depend on the number and size of the program’s input and

output.
• The fixed requirements include, the instruction space(space

needed to store the code), space for simple variable, constants etc.
2. Variable Space Requirements
• This component consist of the space needed by structured

variables whose size depends on the particular instance I, of the
problem being solved.

• It also include the additional space required when a function use
recursion.
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• The variable space requirement of a program P working on an
instance I is denoted Sₚ(I).

• We can express the total space requirements S(P) of any program as

S(P)= c+ Sₚ(I)

• Where c is a constant representing the fixed space requirement.

• When analyzing the space complexity of a program , we are usually
concerned with only the variable space requirements.
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Eg: float abc(float a, float b, float c)
{

return a+b+b*c+(a+b-c)/(a+b)+4.00
}

• we have a function abc, which accepts three simple variables as
input and returns a simple value as output.

• According to the classification give, this function has only fixed
space requirements.

So, 𝐒𝐚𝐛𝐜(I) = 0
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• Space complexity only consider variable space requirement.
• Variable space requirements occurs only when the function

contains iteration, recursion or loop.
Eg: Consider a recursive function for summing a list of numbers

float rsum(float list[], int n)
{

if (n)
return(rsum(list,n-1)+list[n-1]);
return(0);

}
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• Here, the summation is handled recursively. This means that the
compiler must save the parameters, local variables and the return
address for each recursive call.

• The following table shows that the number of bytes required for
one recursive call under the assumption that an integer and the
array each required 4 bytes.
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TYPE NAME NO.OF BYTES

Parameter 1 – array 
pointer

list[] 4

Parameter 2 – integer n 4

return address 4
Total = 12

EDULINE

• The variable space is 12 for one time recursion. If ‘n’ is the size of
an array, then

Space complexity = n×12
• That is, in recursive function call, the space requirement is more

compared with the iteration space requirement.
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TIME COMPLEXITY
The time T(P) taken by a program P is the sum of its compile time

and its run time.
Time complexity only consider execution(run) time. Type of time

complexities are
• Worst case time complexity – The maximum value of f(n) for any

possible input.
• Average case time complexity – The expected value of f(n)
• Best case time complexity – minimum possible value of f(n).

Where f(n) is a function/ computing time of an algorithm.
Worst case time complexity of an algorithm gives an indication

about maximum machine time and other resources required to run
an algorithm.
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PERFORMANCE EVALUATION
Performance evaluation of an algorithm or a program can be loosely
divided in to 2 major phases.
Priori Estimates
• It is machine independent technique.
• We determine the frequency count of each statement, ie ; how

many times a statement is executed. This number can be
determined from the algorithm, independent of the machine it will
be executed on and the programming language in which the
algorithm is written.
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Eg: consider the statement, which is present in our program
x=x+1

• First we determine the amount of time a single execution will take.
• Second is the number of times it is executed. The product of these

numbers will be the total time taken by this statement.
• Priori estimate is explain in terms of frequency count.
Posteriori Testing
• It is a machine dependent technique.
• We take in to account the characteristics of the machine in which

we run the algorithm and the language used to implement the
algorithm.
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Frequency count method to calculate the 
computation time of an algorithm

Two methods for Time Complexity calculation are
1. Frequency count (Step count)
2. Asymptotic Notation
Frequency count – how many times the instruction is executed.
Rules
• Comments & Declarations – Step count=0
• Return & Assignment – Step count= 1
• Ignore low order exponent when higher order exponents are

present
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For example consider 5n⁴+7nଷ+10nଶ+n +100. Here
Time Complexity (TC) = O(n⁴)

• Ignore constant multiplier.
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Example Step Count
int sum (int a[ ], int n) 0

{
s=0; 1
for(i=0;i<n;i++) 1+ (n+1)+n

s=s+a[i]; n
return s;  } 1

= 3n+4        So, TC= O(n)

EDULINE

Eg:
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Example Step Count
int sum (int n) 0

{
int partialsum; 0
partialsum=0; 1
for(int i=1;i<=n;i++) 1+ (n+1) + n

partialsum+= i*i*i; 4n
return partialsum; 1  

} = 6n+4 So, TC= O(n)
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Nested Loops
• The total running time of a statement inside a group of nested loop

is the running time of the statement multiplied by the product of
the size of all the loops.

Eg: for (i=0;i<n;i++)
for (j=0;j<n;j++)

k++;
This program fragment is O(𝒏𝟐)
Consecutive Statements
• These just add, which means that the maximum is the one that

counts.
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Ie; if T₁(n) = O(f(n)) and T₂(n) = O(g(n)). Then,
a) T₁(n)+T₂(n) = max(O(f(n)), O(g(n)))
b) T₁(n)* T₂(n) = O (f(n)*g(n))
Eg: for (i=0;i<n;i++) O(n)

a[i]=0;
for (i=0;i<n;i++)

for (j=0;j<n;j++) O(𝑛ଶ)
a[i]+=a[j]+i+j;

• This program fragment, which has O(n) works followed by O(nଶ)
work, is also O(𝒏𝟐)
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ASYMPTOTIC NOTATIONS FOR COMPLEXITY 
OF ALGORITHMS

1. Big “oh” [O]
f(n) = O(g(n)) iff there exist 2 +ve constants c and n₀ such that

|f(n)| ≤ c.|g(n)| for all n≥ n₀
f(n) = computing time of some algorithm.
• When we say that the computing time of an algorithm is O(g(n)),

we mean that its execution takes no more than a constant time
g(n).
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Eg: 10nଶ+4n +2

|f(n)|≤ c. |g(n)|
f(n) ≤ nଶ for n≥5

TC = O(𝒏𝟐)
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n f(n) c. 𝒏𝟐,  
c=11

c.n ,  
c=5

1 16 11 5

2 50 44 10

3 104 99 15

4 178 176 20

5 272 275 25

6 386 396 30
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Properties of Big “oh”
• If the time complexity of f(n) is O(g(n)) and the time complexity of

g(n) is O(h(n)), then f(n) has a time complexity of O(h(n))
• If f(n)= O(h(n)) and g(n) = O(h(n)), then f(n)+g(n)= O(h(n))
• an୩ has a time complexity of O(n୩) where, a is constant.
• In Big Oh, g(n) is the upper bound of f(n)
• Rate of growth – 1, logn, n, nlogn, nଶ, nଷ, 2୬. These functions are

general functions which is same as g(n)
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2. Omega (Ω)
• f(n) = Ω(g(n)) iff there exist +ve constants c and n₀ such that

f(n)≥c.g(n) for all n, n≥n₀
• Here g(n) is the lower bound of f(n)

Eg: 10nଶ+4n +2

f(n) ≥ c. g(n)
f(n) ≥ nଶ for n≥1

TC = Ω (𝒏𝟐)
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n f(n) c. 𝒏𝟐,  
c=9

c.n ,  
c=3

1 16 9 3
2 50 36 6
3 104 81 9
4 178 144 12
5 272 225 15
6 386 324 18
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3. Theta (θ)
• f(n) = θ(g(n)) iff there exist +ve constants c₁ , c₂ and n₀ such that

c₁.g(n)≤ f(n)≤c₂.g(n) for all n, n≥n₀
• Gives average case TC
Eg:3n +2
TC = θ (n)
4. Little oh (o)

• for f(n)=o(g(n)), then lim
௡→ஶ

𝐟(𝐧)

𝐠(𝐧)
=0 where g(n)≠0

• TC will be one added to the greatest power of the given polynomial
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Eg: f(n)= 3n+1
TC = o(𝒏𝟐)

f(n) = 2nଶ+4n +5
TC = o(𝒏𝟑)

5. Little Omega (ω)

• for f(n)=ω(g(n)), then lim
௡→ஶ

𝐠(𝐧)

𝐟(𝐧)
=0 where f(n)≠0

Eg: 4nଶ+2n
TC = ω(n)

3n+2
TC= ω(1)
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MASTER’S THEOREM
• Master’s Theorem is used to solve recursive equations, because many

algorithms are recursive in nature.
T(n)= aT(n/b)+θ(nᵏ logᵖn) where a≥1, b>1, k≥0 and p is a real

number
1. if a>bᵏ, then T(n)=θ(𝑛୪୭୥್ ௔)
2. if a= bᵏ

a) if p>-1, then T(n)=θ(𝑛୪୭୥್ ௔ log 𝑛௣ାଵ)
b) if p=-1, then T(n)=θ(𝑛୪୭୥್ ௔ log logn)
c) if p<-1, then T(n)=θ(𝑛୪୭୥್ ௔)

3. If a< bᵏ
a) if p≥0, then T(n)=θ(nᵏlog 𝑛௣)
b) if p<0, then T(n)=θ(nᵏ)
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Eg 1: T(n) = 3T(n/2)+nଶ

Here , a=3, b=2, k=2, p=0
a bᵏ
3 2ଶ=4 ie, a<bᵏ (3rd condition)
Now check p. Here p≥0

So we should apply condition 3a.
T(n)=θ(nᵏlog 𝑛௣)

θ(𝑛ଶlog 𝑛଴)
θ(𝒏𝟐)
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Eg 2: T(n) = T(n/2)+nଶ

Here , a=1, b=2, k=2, p=0
a bᵏ
1 2ଶ=4 ie, a<bᵏ (3rd condition)
Now check p. Here p≥0

So we should apply condition 3a.
T(n)=θ(nᵏlog 𝑛௣)

θ(𝑛ଶlog 𝑛଴)
θ(𝒏𝟐)
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Eg 3: T(n) = 2 T(n/2)+log n
Here , a= 2, b=2, k=0, p=1

2 >2⁰ (1st condition)
T(n)= θ(𝑛୪୭୥ ௕

ೌ
)

θ(𝑛୪୭୥ ଶ
మ
)

θ( n)
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Eg 3: T(n) = 16T(n/4)+n
Here , a=16, b=4, k=1, p=0

16>4 (1st condition)
T(n)= θ(𝑛୪୭୥್ ௔)

θ(𝑛୪୭୥₄ ଵ଺)
θ(𝒏𝟐)
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