
DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 1

MODULE 1
BASIC CONCEPTS OF DATA

STRUCTURES

Prepared By Mr. EBIN PM, AP, IESCE 1

EDULINE

DATASTRUCTURE
A data structure is a particular way of organizing data in a

computer so that it can be used effectively

Prepared By Mr.EBIN PM, AP, IESCE 2

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 2

EDULINE

ALGORITHM
An algorithm is a finite set of instructions which, if followed,

accomplish a particular task. Every algorithm must satisfy the
following criteria

• Input – externally supplied
• Output – at least one quantity is produced
• Definiteness – each instruction must be clear and unambiguous
• Finiteness – for all cases , the algorithm will terminate after a

number of steps
• Effectiveness –must be feasible

Prepared By Mr.EBIN PM, AP, IESCE 3

EDULINE

ALGORITHM ANALYSIS
To analyze an algorithm is to determine the amount of resource

(such as Time and Storage Space) necessary to execute it.
In theoretical analysis of algorithms, it is common to estimate their

complexity in the asymptotic sense, ie to estimate the complexity
function for arbitrarily large input.
Space Complexity
• The space complexity of a program is the amount of memory that

it needs to run to completion. The space needed the program is the
sum of the following components

Prepared By Mr.EBIN PM, AP, IESCE 4

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 3

EDULINE

1. Fixed Space Requirements
• Do not depend on the number and size of the program’s input and

output.
• The fixed requirements include, the instruction space(space

needed to store the code), space for simple variable, constants etc.
2. Variable Space Requirements
• This component consist of the space needed by structured

variables whose size depends on the particular instance I, of the
problem being solved.

• It also include the additional space required when a function use
recursion.

Prepared By Mr.EBIN PM, AP, IESCE 5

EDULINE

• The variable space requirement of a program P working on an
instance I is denoted Sₚ(I).

• We can express the total space requirements S(P) of any program as

S(P)= c+ Sₚ(I)

• Where c is a constant representing the fixed space requirement.

• When analyzing the space complexity of a program , we are usually
concerned with only the variable space requirements.

Prepared By Mr.EBIN PM, AP, IESCE 6

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 4

EDULINE

Eg: float abc(float a, float b, float c)
{

return a+b+b*c+(a+b-c)/(a+b)+4.00
}

• we have a function abc, which accepts three simple variables as
input and returns a simple value as output.

• According to the classification give, this function has only fixed
space requirements.

So, 𝐒𝐚𝐛𝐜(I) = 0

Prepared By Mr.EBIN PM, AP, IESCE 7

EDULINE

• Space complexity only consider variable space requirement.
• Variable space requirements occurs only when the function

contains iteration, recursion or loop.
Eg: Consider a recursive function for summing a list of numbers

float rsum(float list[], int n)
{

if (n)
return(rsum(list,n-1)+list[n-1]);
return(0);

}

Prepared By Mr.EBIN PM, AP, IESCE 8

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 5

EDULINE

• Here, the summation is handled recursively. This means that the
compiler must save the parameters, local variables and the return
address for each recursive call.

• The following table shows that the number of bytes required for
one recursive call under the assumption that an integer and the
array each required 4 bytes.

Prepared By Mr.EBIN PM, AP, IESCE 9

TYPE NAME NO.OF BYTES

Parameter 1 – array
pointer

list[] 4

Parameter 2 – integer n 4

return address 4
Total = 12

EDULINE

• The variable space is 12 for one time recursion. If ‘n’ is the size of
an array, then

Space complexity = n×12
• That is, in recursive function call, the space requirement is more

compared with the iteration space requirement.

Prepared By Mr.EBIN PM, AP, IESCE 10

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 6

EDULINE

TIME COMPLEXITY
The time T(P) taken by a program P is the sum of its compile time

and its run time.
Time complexity only consider execution(run) time. Type of time

complexities are
• Worst case time complexity – The maximum value of f(n) for any

possible input.
• Average case time complexity – The expected value of f(n)
• Best case time complexity – minimum possible value of f(n).

Where f(n) is a function/ computing time of an algorithm.
Worst case time complexity of an algorithm gives an indication

about maximum machine time and other resources required to run
an algorithm.

Prepared By Mr.EBIN PM, AP, IESCE 11

EDULINE

PERFORMANCE EVALUATION
Performance evaluation of an algorithm or a program can be loosely
divided in to 2 major phases.
Priori Estimates
• It is machine independent technique.
• We determine the frequency count of each statement, ie ; how

many times a statement is executed. This number can be
determined from the algorithm, independent of the machine it will
be executed on and the programming language in which the
algorithm is written.

Prepared By Mr.EBIN PM, AP, IESCE 12

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 7

EDULINE

Eg: consider the statement, which is present in our program
x=x+1

• First we determine the amount of time a single execution will take.
• Second is the number of times it is executed. The product of these

numbers will be the total time taken by this statement.
• Priori estimate is explain in terms of frequency count.
Posteriori Testing
• It is a machine dependent technique.
• We take in to account the characteristics of the machine in which

we run the algorithm and the language used to implement the
algorithm.

Prepared By Mr.EBIN PM, AP, IESCE 13

EDULINE

Frequency count method to calculate the
computation time of an algorithm

Two methods for Time Complexity calculation are
1. Frequency count (Step count)
2. Asymptotic Notation
Frequency count – how many times the instruction is executed.
Rules
• Comments & Declarations – Step count=0
• Return & Assignment – Step count= 1
• Ignore low order exponent when higher order exponents are

present

Prepared By Mr.EBIN PM, AP, IESCE 14

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 8

EDULINE

For example consider 5n⁴+7nଷ+10nଶ+n +100. Here
Time Complexity (TC) = O(n⁴)

• Ignore constant multiplier.

Prepared By Mr.EBIN PM, AP, IESCE 15

Example Step Count
int sum (int a[], int n) 0

{
s=0; 1
for(i=0;i<n;i++) 1+ (n+1)+n

s=s+a[i]; n
return s; } 1

= 3n+4 So, TC= O(n)

EDULINE

Eg:

Prepared By Mr.EBIN PM, AP, IESCE 16

Example Step Count
int sum (int n) 0

{
int partialsum; 0
partialsum=0; 1
for(int i=1;i<=n;i++) 1+ (n+1) + n

partialsum+= i*i*i; 4n
return partialsum; 1

} = 6n+4 So, TC= O(n)

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 9

EDULINE

Nested Loops
• The total running time of a statement inside a group of nested loop

is the running time of the statement multiplied by the product of
the size of all the loops.

Eg: for (i=0;i<n;i++)
for (j=0;j<n;j++)

k++;
This program fragment is O(𝒏𝟐)
Consecutive Statements
• These just add, which means that the maximum is the one that

counts.

Prepared By Mr.EBIN PM, AP, IESCE 17

EDULINE

Ie; if T₁(n) = O(f(n)) and T₂(n) = O(g(n)). Then,
a) T₁(n)+T₂(n) = max(O(f(n)), O(g(n)))
b) T₁(n)* T₂(n) = O (f(n)*g(n))
Eg: for (i=0;i<n;i++) O(n)

a[i]=0;
for (i=0;i<n;i++)

for (j=0;j<n;j++) O(𝑛ଶ)
a[i]+=a[j]+i+j;

• This program fragment, which has O(n) works followed by O(nଶ)
work, is also O(𝒏𝟐)

Prepared By Mr.EBIN PM, AP, IESCE 18

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 10

EDULINE

ASYMPTOTIC NOTATIONS FOR COMPLEXITY
OF ALGORITHMS

1. Big “oh” [O]
f(n) = O(g(n)) iff there exist 2 +ve constants c and n₀ such that

|f(n)| ≤ c.|g(n)| for all n≥ n₀
f(n) = computing time of some algorithm.
• When we say that the computing time of an algorithm is O(g(n)),

we mean that its execution takes no more than a constant time
g(n).

Prepared By Mr.EBIN PM, AP, IESCE 19

EDULINE

Eg: 10nଶ+4n +2

|f(n)|≤ c. |g(n)|
f(n) ≤ nଶ for n≥5

TC = O(𝒏𝟐)

Prepared By Mr.EBIN PM, AP, IESCE 20

n f(n) c. 𝒏𝟐,
c=11

c.n ,
c=5

1 16 11 5

2 50 44 10

3 104 99 15

4 178 176 20

5 272 275 25

6 386 396 30

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 11

EDULINE

Properties of Big “oh”
• If the time complexity of f(n) is O(g(n)) and the time complexity of

g(n) is O(h(n)), then f(n) has a time complexity of O(h(n))
• If f(n)= O(h(n)) and g(n) = O(h(n)), then f(n)+g(n)= O(h(n))
• an୩ has a time complexity of O(n୩) where, a is constant.
• In Big Oh, g(n) is the upper bound of f(n)
• Rate of growth – 1, logn, n, nlogn, nଶ, nଷ, 2୬. These functions are

general functions which is same as g(n)

Prepared By Mr.EBIN PM, AP, IESCE 21

EDULINE

2. Omega (Ω)
• f(n) = Ω(g(n)) iff there exist +ve constants c and n₀ such that

f(n)≥c.g(n) for all n, n≥n₀
• Here g(n) is the lower bound of f(n)

Eg: 10nଶ+4n +2

f(n) ≥ c. g(n)
f(n) ≥ nଶ for n≥1

TC = Ω (𝒏𝟐)

Prepared By Mr.EBIN PM, AP, IESCE 22

n f(n) c. 𝒏𝟐,
c=9

c.n ,
c=3

1 16 9 3
2 50 36 6
3 104 81 9
4 178 144 12
5 272 225 15
6 386 324 18

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 12

EDULINE

3. Theta (θ)
• f(n) = θ(g(n)) iff there exist +ve constants c₁ , c₂ and n₀ such that

c₁.g(n)≤ f(n)≤c₂.g(n) for all n, n≥n₀
• Gives average case TC
Eg:3n +2
TC = θ (n)
4. Little oh (o)

• for f(n)=o(g(n)), then lim
௡→ஶ

𝐟(𝐧)

𝐠(𝐧)
=0 where g(n)≠0

• TC will be one added to the greatest power of the given polynomial

Prepared By Mr.EBIN PM, AP, IESCE 23

EDULINE

Eg: f(n)= 3n+1
TC = o(𝒏𝟐)

f(n) = 2nଶ+4n +5
TC = o(𝒏𝟑)

5. Little Omega (ω)

• for f(n)=ω(g(n)), then lim
௡→ஶ

𝐠(𝐧)

𝐟(𝐧)
=0 where f(n)≠0

Eg: 4nଶ+2n
TC = ω(n)

3n+2
TC= ω(1)

Prepared By Mr.EBIN PM, AP, IESCE 24

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 13

EDULINE

MASTER’S THEOREM
• Master’s Theorem is used to solve recursive equations, because many

algorithms are recursive in nature.
T(n)= aT(n/b)+θ(nᵏ logᵖn) where a≥1, b>1, k≥0 and p is a real

number
1. if a>bᵏ, then T(n)=θ(𝑛୪୭୥್ ௔)
2. if a= bᵏ

a) if p>-1, then T(n)=θ(𝑛୪୭୥್ ௔ log 𝑛௣ାଵ)
b) if p=-1, then T(n)=θ(𝑛୪୭୥್ ௔ log logn)
c) if p<-1, then T(n)=θ(𝑛୪୭୥್ ௔)

3. If a< bᵏ
a) if p≥0, then T(n)=θ(nᵏlog 𝑛௣)
b) if p<0, then T(n)=θ(nᵏ)

Prepared By Mr.EBIN PM, AP, IESCE 25

EDULINE

Eg 1: T(n) = 3T(n/2)+nଶ

Here , a=3, b=2, k=2, p=0
a bᵏ
3 2ଶ=4 ie, a<bᵏ (3rd condition)
Now check p. Here p≥0

So we should apply condition 3a.
T(n)=θ(nᵏlog 𝑛௣)

θ(𝑛ଶlog 𝑛଴)
θ(𝒏𝟐)

Prepared By Mr.EBIN PM, AP, IESCE 26

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 14

EDULINE

Eg 2: T(n) = T(n/2)+nଶ

Here , a=1, b=2, k=2, p=0
a bᵏ
1 2ଶ=4 ie, a<bᵏ (3rd condition)
Now check p. Here p≥0

So we should apply condition 3a.
T(n)=θ(nᵏlog 𝑛௣)

θ(𝑛ଶlog 𝑛଴)
θ(𝒏𝟐)

Prepared By Mr.EBIN PM, AP, IESCE 27

EDULINE

Eg 3: T(n) = 2 T(n/2)+log n
Here , a= 2, b=2, k=0, p=1

2 >2⁰ (1st condition)
T(n)= θ(𝑛୪୭୥ ௕

ೌ
)

θ(𝑛୪୭୥ ଶ
మ
)

θ(n)

Prepared By Mr.EBIN PM, AP, IESCE 28

DATA STRUCTURE http://www.youtube.com/c/EDULINEFORCSE
STUDENTS

Prepared By Mr. EBIN PM, AP, IESCE 15

EDULINE

Eg 3: T(n) = 16T(n/4)+n
Here , a=16, b=4, k=1, p=0

16>4 (1st condition)
T(n)= θ(𝑛୪୭୥್ ௔)

θ(𝑛୪୭୥₄ ଵ଺)
θ(𝒏𝟐)

Prepared By Mr.EBIN PM, AP, IESCE 29

